Exercise 65

For the following exercises, use the table of values that represent points on the graph of a quadratic function. By determining the vertex and axis of symmetry, find the general form of the equation of the quadratic function.

x	-2	-1	0	1	2
y	5	2	1	2	5

Solution

Notice that the y-values are the same for $x=-1,1$ and $x=-2,2$. This means the axis of symmetry is $x=0$. Start with the general formula of a quadratic function in vertex form.

$$
y=a(x-h)^{2}+k
$$

The y-value corresponding to $x=0$ is 1 , so the vertex is (0,1), which means $h=0$ and $k=1$.

$$
\begin{aligned}
y & =a(x-0)^{2}+1 \\
& =a x^{2}+1
\end{aligned}
$$

Use any of the other points to determine a. For example, $y=2$ when $x=1$.

$$
\begin{gathered}
2=a(1)^{2}+1 \\
1=a(1) \\
a=1
\end{gathered}
$$

Therefore, the quadratic function is

$$
\begin{aligned}
y & =(1) x^{2}+1 \\
& =x^{2}+1 .
\end{aligned}
$$

